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1.  Introduction 

The major purpose of this paper is to illustrate a class of prob- 

lems which are of mutual interest to the reliability, queuing and 

inventory communities.  Although often separately studied, interests 

in such problems really are common, and mutual benefits could accrue 

by interaction among these communities. 

2.  A Reliability Problem 

In Mann, Schafer and Singpurwalla (1974), Section 10.3 deals 

with reliability models for maintained systems.  In particular. Section 

10.3.1 gives an example of a single unit which fails according to an 

exponential distribution with mean time to failure (MTTF) of, say, 

1/X and is repaired (as good as new) according to an exponential dis- 

tribution with mean time to repair (MTTR) of, say,  1/y .  This process 

is then a continuous time Markov process (CTMP) and is driven by the 
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infinitesimal generator or, as it is also often called, the rate matrix 

0   1 

0 
Q = 

-X   X 

(1) 

The two possible system states are  0  (unit is operating) or  1 

(unit is down, and undergoing repair) .' 

We desire to find the availability of the unit at time t , which 

we denote as A(t) , and to do this we need to find £(t) , the state 

probability (row) vector at time  t , that is, 

£(t) = (p^(t),    p^(t)} 

and hence 

A(t) E pQ(t) . 

To find £(t) , we must solve the Kolmogorov forward equations 

(a set of differential-difference equations) 

£'(t) = £(t)Q , (2) 

with the added condition that the probabilities sum to one, namely, 

1 = £(t)e , (3) 

where e is a column vector of I's .  Thus writing out (2) and (3) we 

have 

P(!,(t) = -XVQU)  +  yp^(t) 

pj_(t) =  XpQ(t) - yp^(t) 

PQ(t) + p^(t) , 

(4) 

(5) 

(6) 

and we must solve the set of equations (4) and (6) or (5) and (6).  This 

can be easily done using Laplace transforms [we employ the boundary 
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condition  CPQ^^) = 1 » P-, (0) = O} ; that is, the unit is working at time 

zero] and obtain 

Note that the steady state availability is 

A E lim A(t) = ^ , 

the well known result for an alternating renewal process. 

3.  An Expanded Reliability Probl em 

We now consider an expanded version of the problem treated in 

Section 2.  Consider now N  units and  c  repair channels (c < N) . 

We now define A(t)  as the probability that at least some desired number, 

say M , of the units is operational at time  t .  If more than M are 

operational, the excess are considered spares and are on cold standby 

(note that there are a total of N-M =  y spares in the system, but that 

all y  spares are not always available).  If less than M units are 

operational, the system is performing below the desired level. 

A system state can be described by the number of units up (or 

operating, call this  n  ) or by the number of units in or awaiting re- 

pair (call this Tx^  ).  Either state descriptor gives complete informa- 

tion since n^ + n^ = N .  For this problem, the Q matrix is N+1 x N+1 - 

as there are a total of N+1  states:  0,1,2,...,N .  Hence it is neces- 

sary to solve a set of  N+1  linear, first-order differential equations 

of the type given by (2). 

- 3 - 
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4.  A Queuing Problem 

The above "reliability problem" is also a "classical" problem in 

queuing theory and is known as the machine repair problem [see Cooper 

(1981, Section 3.8), Klelnrock (1974, Section 3.8), or Gross and Harris 

(1974, Section 3.6)].  Figure 1 shows a schematic of this problem, mod- 

eled as a closed queuing network.  This is a two node, closed queuing 

network, where the total of N units are, at various times and in 

various combinations, distributed among the two nodes.  At the operating 

node, we show M parallel service channels so that a queue at this node 

represents the cold standby spares available. 

5.  A Repairable Item Inventory Problem 

The problem discussed in Sections 3 and 4 also fits the category 

of an inventory problem.  It is a typical "repairable item Inventory 

problem," for which it is desired to find the optimal combination of the 

numbers of spares and repair channels, so as to satisfy certain service 

Operating Repair 

Spares 

OO 

Repair 
Queue 

OO 

Figure 1,  Schematic of a machine repair probl em. 
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level performance criteria.  Thus the problem mathematically is to find 

y and  c which 

Minimize   E[Cost/Year] = k y + k„c 

subject to A(t.) = I p (t.) > 1 - a  (i = 1,2,....T) 
n=0 

N 
L(t ) =    I    np (t.) < C (i = 1,2,...,T) , 

^   n=0  "^  ^ 

where p  is the probability that  n units are at the repair node, 

k  is the annual cost associated with having a spare (amortization of 

purchase cost including interest, insurance, storage, etc.),  k„  is the 

annual cost associated with each repair channel (amortization, salary of 

repair crew, maintenance of repair equipment, etc.),  1 - a  is the 

desired availability, and C    is the desired limit on the average number 

of units.in or awaiting repair.  The dots represent other constraints 

that may possibly be imposed, for example, a constraint on total 

budget. 

In order to solve this problem, it is necessary first to find 

p(t) , and this is what we focus our attention on here.  We refer the 

reader to Gross, Miller and Soland (1983) for a discussion of the opti- 

mization aspects of such problems. 

Consider a more complex multi-echelon version of the above 

problem as shown in Figure 2.  Pictured here are three "field" locations, 

each with local repair capability.  However, depending on the problem 

causing the failure, a certain percentage of failed units must be sent 

5 - 
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Local 
Repair 
1 

Operating 
Location 
1 

; 

Depot 
Spares 

Depot 
Repair Local 

Repair 
2 

Operating 
Location 
2 

; + 1 i 
■ 'v: 

Local 
Repair 
3 

Operating 
Location 
3 

Figure 2.  Multi-echelon repairable item 
inventory system. 

to a higher echelon (depot) to be repaired.  Each field location, as 

well as the depot, stocks spare units which, if available, are dis- 

patched from the location to which the failed unit is sent.  If spares 

are not available, requests are backordered. 

As long as all failure and repair times are exponential, we still 

have a CTMP, albeit with a very large (but finite)  Q matrix.  For 

example, Table 1 shows a specific example which yields a state space 

of over 100 million states. 

For such systems, shown in Figure 2, we might desire A (t) , 

A2(t) , A2(t)  and A-^^^^^^   ' where A. (t)  is the probability that M. 

units are operating at field location  i  at time  t  (i = 1,2,3)  and 

^123^^"*  ^^ ^^® probability that at time  t ,  M  are operating at 

location 1,  M^  at location 2, and M^  at location 3 simultaneously. 

In the example given in Table 1,  M. =25,1=1,2,3. 

- 6 - 
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TABLE 1 

THREE LOCATION, TWO ECHELON EXAMPLE 

Location N M c 

1 29 25 3 

2 29 25 3 

3 29 25 3 

Depot 6 __ 4 

Number of states =   \$\   =  100,706,625 

6.  Solution Techniques 

Obviously, for large systems, the use of Laplace transforms for 

obtaining p(t)  is not feasible.  Since our systems are finite, numeri- 

cal methods can be utilized.  Numerical integration techniques such as 

Runge-Kutta or predictor-corrector can be employed for moderately sized 

systems.  We found for these types of problems, another method which we 

refer to as randomization  to be more efficient.  For details of the 

development of this procedure, we refer the reader to Grassmann (1977a 

and 1977b), or to Gross and Miller (1984a, 1984b).  The randomization 

method, as far as we can ascertain, dates back at least to a paper by 

Jensen (1953), and is mentioned, often under other names (for example, 

subordination of Markov chains to Poisson processes or uniformized 

embedded Markov chains), by Cohen (1969), Feller (1971), Qinlar (1975), 

Keilson and Kester (1977), and Keilson (1979), to mention a few. 

- 7 
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The basic idea of the randomization technique is to view the CTMP 

in a certain way, which allows the major computation to be performed on 

an imbedded discrete time Markov chain (DTMC) called the unifoTmized 

chain.  The transitions for this DTMC are generated by an underlying 

Poisson process (hence the name randomization).  The single-step 

transition probability matrix of the DTMC and the parameter (rate) of 

the Poisson process are functions of the original rate matrix,  Q = 

{q. .} , of the CTMP. 

Let 

A = max q.. 
1 

and 

P = Q/A + I . 

Then the imbedded uniformized DTMC has single-step transition probability 

matrix P  and the transitions of this DTMC are generated by a Poisson 

process with rate A .  Note that since the diagonal elements of  Q 

are negative, that is, 

^ii = -  ^  ^ij ' 
J 

(i^j) 

A  is actually the absolute value of the minimum diagonal element, which 

is the mean exit rate of the state with the largest mean exit rate. 

Denoting the state probability vector after k  transitions of 

the DTMC by ^(k) , it can be shown [see Gross and Miller (1984a)] that 

°° k  -Al- 
(At)*^  ^^^ P (t) =  I  ,i^^s-n.^—, (8) 

k=0 

where p. (t)  is the probability that the CTMP is in state i  at time 
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t  (jth element of p(t) ),  (|). (k)  is the probability that the imbedded 

uniformized DTMC is in state j  after k  transitions (jth element 

k -At 
of ^(k) ) and  (At) e  /k!  is the probability of k  transitions of 

the DTMC in clock time  t .  The usual recursion can be used to get 

(j). (k) , that is, 

^(0) = p(0) ; ^(k) = ^(k-l)P . (9) 

To use (8) for computational purposes, the infinite sum must be 

truncated.  The error of truncation can be nicely bounded since we are 

discarding a Poisson tail; and, in fact, the computing version of (8) 

becomes 

T(e,t)      ,. k -At 
P.(t) =  I   ,(k)iAiI-^— , (10) 
^     , k=0  ^      ^• 

where 

T(e t)^^_^^ 
1 \, > 1 - e  , (11) 

k=0    '^• 

£ being the desired error bound. One advantage of this method over 

numerical integration (besides efficiency) is the ability to exactly 

bound the computational error. 

7.  Results 

The largest problem solved directly by the procedure described 

in the previous section is shown in Table 2.  This example is a two 

field location, two echelon system with a state space size of 20,748. 

Calculated were A^(t) , A2(t) , A^2(t) , t = 1,2,...,15 , with the 

following time-varying scenario.  At time  t = 6 , a sudden decrease 

- 9 - 
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TABLE 2 

TWO LOCATION, TWO 
ECHELON EXAMPLE 

Location N y c 

1 18 4 2 

2 13 2 2 

Depot — 3 4 

e = .001 

\$\   =  20,748 

of MTTF occurs.  The repair facilities cannot make an "in kind" acconmo- 

dation until time  10 .  Figure 3 shows a plot of A^(t)  versus  t 

[A2(t)  and ^2_2^^^     are similar in nature].  The graph shows an initial 

A (0)  of  1.0  (we assume at time zero all  units are operational) and 

thereafter a drop-off toward the steady-state availability as time in- 

creases.  At time  6 , the increase in failure rate occurs and A(t) 

begins to drop off at an increasing rate, heading for a new, lower 

steady-state availability.  However, the increase in repair rate at 

time 10 causes A(t)  to begin to rise, heading back toward the origi- 

nal steady-state availability. 

This run took approximately 25 minutes of CPU time on a VAX 

11/780 computer using the randomization computation of (10) with a more 

efficient procedure than the recursion of (9) [given in Gross and Miller 

(1984a)] for calculating (}) (k) . 

- 10 - 
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^.      / 
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Figure  3.     A   (t)     versus     t     for sample  run. 
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As the systems become more complex (more bases, multiple component 

types, indenture, more echelons, etc.) the state-space grows rapidly. 

We have solved a three location problem, shown in Table 3, using a 

truncated state-space approach, where seldom visited states are "lumped" 

together in single absorbing states [see Gross, Kioussis, and Miller 

(1984)].  There are over 43 million states, but via the truncation ap- 

proach, the state-space was reduced to 23,410 and solved in about 30 

minutes CPU time on the VAX 11/780, adding an error of  .007 .  Calcu- 

lated were A^(t) , A^^^^   >  ^^(t)  and A 23(t) , for  t = 1,2,...,15 . 

TABLE 3 

THREE LOCATION, TWO 
ECHELON EXAMPLE 

Location    N    y   c 

1 25   1   1 

2 24   1   1 

3 .    24   1   1 

Depot    —   2   1 

£ = .001 

I5I = 43,278,703 
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8.  Conclusions 

We have presented here a class of problems of interest to the 

reliability, queuing and inventory communities and briefly demonstrated 

a viable solution procedure for these problems. While researchers in 

the above communities often go their "separate ways," better communica- 

tion among them should benefit all. 
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